The liver has an inherent regenerative capacity via hepatocyte proliferation after mild‐to‐modest damage. When hepatocytes exhaust their replicative ability during chronic or severe liver damage, liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) as an alternative pathway. LPC is often intimately associated with hepatic stellate cells (HSC) activation to promote liver fibrosis. The Cyr61/CTGF/Nov (CCN) protein family consists of six extracellular signaling modulators (CCN1–CCN6) with affinity to a repertoire of receptors, growth factors, and extracellular matrix proteins. Through these interactions, CCN proteins organize microenvironments and modulate cell signalings in a diverse variety of physiopathological processes. In particular, their binding to subtypes of integrin (αvβ5, αvβ3, α6β1, αvβ6, etc.) influences the motility and mobility of macrophages, hepatocytes, HSC, and LPC/OC during liver injury. This paper summarizes the current understanding of the significance of CCN genes in liver regeneration in relation to hepatocyte‐driven or LPC/OC‐mediated pathways. Publicly available datasets were also searched to compare dynamic levels of CCNs in developing and regenerating livers. These insights not only add to our understanding of the regenerative capability of the liver but also provide potential targets for the pharmacological management of liver repair in the clinical setting.