Selective inhibition of the localized excess production of NO by neuronal nitric oxide synthase (nNOS) has been targeted as a potential means of treating various neurological disorders. Based on observations from the X-ray crystal structures of complexes of nNOS with two nNOS-selective, a series of descarboxamide analogues was designed and synthesized (3-7). The most potent compound was aminopyrrolidine analogue 3, which exhibited better potency and selectivity for nNOS than parent compound 2. In addition, 3 provided higher lipophilicity and a lower molecular weight than 2, therefore having better physicochemical properties. N α -Methylated analogues (8-11) also were prepared for increased lipophilicity of the inhibitors, but they had 4-5 fold weaker binding affinity compared to their parent compounds.