Purpose
The aim of this work was to propose a method to prepare composite phosphate conversion coating (CPCC), including ternary phosphate conversion coating (TPCC) and binary phosphate conversion coatings (BPCC), with one-step chemical conversion and to reveal and compare the corrosion resistance between TPCC and BPCC.
Design/methodology/approach
In this work, a calcium–manganese–zinc (Ca–Mn–Zn) TPCC was prepared on the surface of magnesium alloy (MA) AZ91D with one-step chemical conversion method; for Ca-Mn-Zn@TPCC, its microstructure was characterized with scanning electron microscope observation and scanning tunneling microscope detection, and its composition was characterized with energy dispersion spectroscopy and X-ray photoelectron spectroscopy analyses. Particularly, the corrosion resistance of Ca-Mn-Zn@TPCC and its comparison with Ca–Mn, Ca–Zn and Mn–Zn BPCCs were clarified with electrochemical and immersion measurements.
Findings
Ca-Mn-Zn@TPCC, which was composed of Ca, Mn, Zn, P and O, exhibited a mud-shaped with cracks microstructure, and the average crack width, terrain fluctuation and coating thickness were 0.61 µm, 23.78 nm and 2.47 µm, respectively. Ca-Mn-Zn@TPCC provided good corrosion resistance to MA AZ91D; in NaCl solution, the total degradation of Ca-Mn-Zn@TPCC consumed eight days; corrosion products with poor adhesion peeled out from Ca-Mn-Zn@TPCC-coated MA AZ91D spontaneously. Besides, the corrosion resistance of Ca-Mn-Zn@TPCC was better than that of Ca-Mn@BPCC, Ca-Zn@BPCC or Mn-Zn@BPCC.
Originality/value
The successful preparation of Ca-Mn-Zn@TPCC on MA AZ91D surface confirmed the proposed method to prepare CPCC with one-step chemical conversion was feasible; at the same time, it was further confirmed that for phosphate conversion coating, ternary coating had better corrosion resistance than binary coating did.