Oxide-derived copper electrodes have displayed a boost
in activity
and selectivity toward valuable base chemicals in the electrochemical
carbon dioxide reduction reaction (CO2RR), but the exact interplay
between the dynamic restructuring of copper oxide electrodes and their
activity and selectivity is not fully understood. In this work, we
have utilized time-resolved surface-enhanced Raman spectroscopy (TR-SERS)
to study the dynamic restructuring of the copper (oxide) electrode
surface and the adsorption of reaction intermediates during cyclic
voltammetry (CV) and pulsed electrolysis (PE). By coupling the electrochemical
data to the spectral features in TR-SERS, we study the dynamic activation
of and reactions on the electrode surface and find that CO2 is already activated to carbon monoxide (CO) during PE (10% Faradaic
efficiency, 1% under static applied potential) at low overpotentials
(−0.35 VRHE). PE at varying cathodic bias on different
timescales revealed that stochastic CO is dominant directly after
the cathodic bias onset, whereas no CO intermediates were observed
after prolonged application of low overpotentials. An increase in
cathodic bias (−0.55 VRHE) resulted in the formation
of static adsorbed CO intermediates, while the overall contribution
of stochastic CO decreased. We attribute the low-overpotential CO2-to-CO activation to a combination of selective Cu(111) facet
exposure, partially oxidized surfaces during PE, and the formation
of copper-carbonate-hydroxide complex intermediates during the anodic
pulses. This work sheds light on the restructuring of oxide-derived
copper electrodes and low-overpotential CO formation and highlights
the power of the combination of electrochemistry and time-resolved
vibrational spectroscopy to elucidate CO2RR mechanisms.