The presence of early disseminated tumor cells (DTC), otherwise termed micrometastases or minimal residual disease, in the bone marrow (BM), or other secondary compartments, such as the blood and the lymph nodes, is the main reason for recurrence of patients with early stage epithelial cancers after "curative" resection of the primary tumor. There is increasing evidence, that the detection of DTC in BM aspirates may provide additional and independent prognostic information and aid in the stratification of these patients for adjuvant clinical treatment. However, the clinical relevance of micrometastases has not yet been firmly established. In addition, the molecular events and interactions that prevail in early metastatic disease and determine the formation or not of overt metastases remain poorly understood. The methods currently used for the detection of micrometastatic cells include extremely sensitive immunocytochemical and molecular assays, often in conjunction with enrichment techniques for the purification of tumor cells and additional increase of their sensitivity. Nevertheless, the specificity of these methods is mostly inadequate. After the impressive advances of molecular cytogenetics, a highly accurate and global assessment of the genetic status of tumors is now possible. Therefore, the greatest challenge of our time is the application of these novel technologies for the clarification of the key molecular events that initiate metastatic spread. This will further enable us to identify the highly specific and sensitive diagnostic and prognostic markers as well as the therapeutic targets which are so urgently needed.