Signal recognition particles (SRPs) have been identified in organisms as diverse as mycoplasma and mammals; in several cases these SRPs have been shown to play a key role in protein targeting. In each case the recognition of appropriate targeting signals is mediated by SRP subunits related to the 54-kDa protein of mammalian SRP (SRP54). In this study we have characterized the specificity of 54CP, a chloroplast homologue of SRP54 which is located in the chloroplast stroma. We have used a nascent chain cross-linking approach to detect the interactions of 54CP with heterologous endoplasmic reticulum-targeting signals. 54CP functions as a bona fide signal recognition factor which can discriminate between functional and non-functional targeting signals. Using a range of authentic thylakoid precursor proteins we found that 54CP discriminates between thylakoid-targeting signals, interacting with only a subset of protein precursors. Thus, the light-harvesting chlorophyll a/b-binding protein, cytochrome f, and the Rieske FeS protein all showed strong cross-linking products with 54CP. In contrast, no cross-linking to the 23-and 33-kDa proteins of the oxygen-evolving complex were detected. The selectivity of 54CP correlates with the hydrophobicity of the thylakoid-targeting signal and, in the case of light-harvesting chlorophyll a/b-binding protein, with previously determined transport/integration requirements. We propose that 54CP mediates the targeting of a specific subset of precursors to the thylakoid membrane, i.e. those with particularly hydrophobic signal sequences.
The signal recognition particle (SRP)1 of mammalian cells is a ribonucleoprotein complex which promotes the signal sequence-dependent targeting of nascent precursor proteins to the endoplasmic reticulum (1-3). Mammalian SRP is composed of six polypeptides and a 7 S RNA, although only one of the polypeptides, the 54-kDa subunit (SRP54), binds to the hydrophobic endoplasmic reticulum (ER)-targeting signals (1-2). Functional homologues of SRP54 have been identified in many organisms and appear relatively conserved during evolution (4, 5). These proteins are usually found complexed with a 7 S-like RNA and the minimum requirement for SRP-dependent protein targeting seems to be a ribonucleoprotein particle composed of an SRP54-like protein and a 7 S-like RNA (6 -8), together with a cognate receptor for the SRP-precursor protein complex (3, 9, 10). Perturbation of SRP-dependent targeting pathways often leads to the accumulation of secretory proteins. However, in many cases only a subset of precursors accumulate while other proteins continue to be secreted normally (9,(11)(12)(13). This suggests that a discrete population of precursors preferentially utilize an SRP-dependent targeting pathway (1, 4, 13).The delivery of precursor proteins to the thylakoid membrane of chloroplasts is governed by thylakoid-targeting signals. These signals are clearly related to those which target proteins to the ER membrane of eukaroytes and the cytoplasmic membrane of prokaryotes....