AIM:In this research, we show that DNA waves have many applications in biology. DNA is formed by the joining of quantum particles like electrons and charged atoms. DNA has different motions during transcription, translation, and replication, in which the charged particles move, accelerate, and emit waves. Thus, DNA could emit quantum waves.METHODS:Two methods are proposed to observe the effect of DNA waves. The first proposed method measures DNA waves emitted by bacteria suspended in the milk. The vessel of milk is placed in the interior of an inductor. One side of the vessel is connected to a generator and another side to a scope. By sending a current to the inductor, an input electromagnetic field is produced. Bacteria interact with the input field, change it and produce new output signals. Using the scope, the output signals are observed and compared with the input signals. The number of DNA waves produced also depends on temperature.RESULTS:At lower temperatures, bacterial replication is less, and fewer DNA waves are produced. Conversely, more bacteria are generated at higher temperatures, and more DNA waves are produced. The second proposed method acquires and images of DNA signals of chick embryos. In this method, a circuit is constructed that consists of a graphene or metal tube, generator, inductor, scope, DNA in the interior of eggs and DNA exterior to the eggs. Magnetic waves pass the interior and exterior DNA as well as the graphene. The DNA is excited and the exciting interior/exterior DNA exchanges waves. Some of these waves interact with electrons in the graphene tube, and a current is generated. Properties of the chick embryo DNA can be explored by analysing changes in the waves that emerge from the eggs.CONCLUSION:It is concluded that DNA waves could be used extensively in imaging and provide for us the exact information about evolutions of DNAs interior of biological systems.