Cancer poses an ongoing global challenge, despite the substantial progress made in the prevention, diagnosis, and treatment of the disease. The existing therapeutic methods remain limited by undesirable outcomes such as systemic toxicity and lack of specificity or long-term efficacy, although innovative alternatives are being continuously investigated. By offering a means for the targeted delivery of therapeutics, nanotechnology (NT) has emerged as a state-of-the-art solution for augmenting the efficiency of currently available cancer therapies while combating their drawbacks. Melanin, a polymeric pigment of natural origin that is widely spread among many living organisms, became a promising candidate for NT-based cancer treatment owing to its unique physicochemical properties (e.g., high biocompatibility, redox behavior, light absorption, chelating ability) and innate antioxidant, photoprotective, anti-inflammatory, and antitumor effects. The latest research on melanin and melanin-like nanoparticles has extended considerably on many fronts, allowing not only efficient cancer treatments via both traditional and modern methods, but also early disease detection and diagnosis. The current paper provides an updated insight into the applicability of melanin in cancer therapy as antitumor agent, molecular target, and delivery nanoplatform.