The Printability, Microstructure, and Mechanical Properties of Fe80−xMnxCo10Cr10 High-Entropy Alloys Fabricated by Laser Powder Bed Fusion Additive Manufacturing
Kai Li,
Vyacheslav Trofimov,
Changjun Han
et al.
Abstract:This work investigated the effect of Fe/Mn ratio on the microstructure and mechanical properties of non-equimolar Fe80−xMnxCo10Cr10 (x = 30% and 50%) high-entropy alloys (HEAs) fabricated by laser powder bed fusion (LPBF) additive manufacturing. Process optimization was conducted to achieve fully dense Fe30Mn50Co10Cr10 and Fe50Mn30Co10Cr10 HEAs using a volumetric energy density of 105.82 J·mm−3. The LPBF-printed Fe30Mn50Co10Cr10 HEA exhibited a single face-centered cubic (FCC) phase, while the Fe50Mn30Co10Cr10… Show more
With the continuous advancement of science and technology, micro- and nano-manufacturing technologies have become frontier fields in modern manufacturing [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.