Abstract. This paper empirically examines the performance of Black-Scholes and Garch-M call option pricing models using call options data for British Pounds, Swiss Francs and Japanese Yen. The daily exchange rates exhibit an overwhelming presence of volatility clustering, suggesting that a richer model with ARCH/GARCH effects might have a better fit with actual prices. We perform dominant tests and calculate average percent mean squared errors of model prices. Our findings indicate that the Black-Scholes model outperforms the GARCH models. An implication of this result is that participants in the currency call options market do not seem to price volatility clusters in the underlying process.Key words: GARCH, currency options, Black-Scholes JEL Classification: G12, G13, G15Option pricing has its origins in the seminal works of Black-Scholes (1973) and Merton (1973). Empirical testing of these models did not become possible until Feigner and Jacquillat (1979) first proposed a market for currency options. In December of 1982, American Currency Options began trading in the Philadelphia Stock Exchange (PHLX). Today, this exchange lists six dollar-based standardized currency option contracts, which settle in the actual physical currency. These are Australian dollar, British Pound, Canadian Dollar, Euro, Japanese Yen and Swiss Franc.The Black and Scholes (1973) option-pricing model was the first to be used in pricing currency options; but, overtime and in practice, researchers have found that the prices estimated by the Black-Scholes model suffer from many biases. mentions that the Black-Scholes model exhibits under pricing of out-of-the money options, under pricing of options on low volatility securities and under pricing of short-maturity options and results in a U-shaped implied volatility curve. * We are grateful to Dr. Jin-Chuan Duan, Dr. Stewart Mayhew and the participants of the 2003 FMA International Meetings for valuable comments. We also thank Dr. Leigh Murray, New Mexico State University for statistical help and Dr. Jayashree Harikumar, Los Alamos National Laboratories, New Mexico for help with MATLAB.
HARIKUMAR, DE BOYRIE AND PAKIn addressing these issues, some researchers have made refinements to the Black-Scholes model. Amin and Jarrow (1991) introduce a stochastic interest rate model in which the assumption of constant interest rates, both domestic and foreign, is relaxed. Hilliard, Madura and Tucker (1991) develop a currency option-pricing model under stochastic interest rates when interest rate parity holds. Their model assumes that domestic and foreign bond prices have local variances that depend only on time and not on other state variables such as the level of short-term interest rates. The authors test their option model and find that the stochastic interest rate model with domestic and foreign short term rates, driven by Arithmetic Brownian motion, exhibit greater pricing accuracy than the constant interest rate alternative. While modeling stochastic volatility, Heston and Nandi (2000) observe ...