2018
DOI: 10.1002/mma.5167
|View full text |Cite
|
Sign up to set email alerts
|

The problem of determining the piezoelectric module of electroviscoelasticity equation

Abstract: We consider the problem of finding the piezoelectric module e(x 3 ), x 3 > 0, occurring in the system of integro-differential electroviscoelasticity equations. The medium density and the Lamé parameters are assumed to be function of one variable. The integrand K(t), t ∈ [0, T ] is known. As additional information, the Fourier transform of the second component of the displacement vector function for x 3 = 0 is specified. The theorems on the existence of a unique solution of the inverse problem and the stability… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 12 publications
0
4
0
2
Order By: Relevance
“…As result, we conclude that if 𝜎 and 𝜌 are taken from conditions 𝜎 > max(𝜎 1 , 𝜎 2 , 𝜎 3 , 𝜎 4 , 𝜎 5 , 𝜎 6 ) and 𝜌 ∈ (0, min(𝜌 1 , 𝜌 2 , 𝜌 3 , 𝜌 4 )), then the operator A carries out contracting mapping the ball S(g 0 , 𝜌) into itself, and according to Banach theorem in this ball, it has a unique fixed point; that is, there exists a unique solution of operator Equation (18). The proof of the theorem is complete.…”
Section: Theorem 1 (Existence and Uniqueness) Assume The Conditions 𝜃mentioning
confidence: 99%
“…As result, we conclude that if 𝜎 and 𝜌 are taken from conditions 𝜎 > max(𝜎 1 , 𝜎 2 , 𝜎 3 , 𝜎 4 , 𝜎 5 , 𝜎 6 ) and 𝜌 ∈ (0, min(𝜌 1 , 𝜌 2 , 𝜌 3 , 𝜌 4 )), then the operator A carries out contracting mapping the ball S(g 0 , 𝜌) into itself, and according to Banach theorem in this ball, it has a unique fixed point; that is, there exists a unique solution of operator Equation (18). The proof of the theorem is complete.…”
Section: Theorem 1 (Existence and Uniqueness) Assume The Conditions 𝜃mentioning
confidence: 99%
“…(2) 1 (ỹ)ỹ ′ (2) . Приводя дроби к общему знаменателю, переходя к разностям аналогично методике работ [1], [10] (в силу громоздкости процедуры выкладки опускаются), учитывая (5.33), (5.34), а также оценки ∥D ) , и применяя лемму Гронуолла к (5.32), получаем требуемую оценку (2.41). Теорема 6 доказана.…”
Section: (ξ)unclassified
“…Коэффициентные обратные задачи для гиперболических интегро-дифференциальных уравнений вязкоупругости рассматривались, например, в работах [6][7][8][9][10][11]. В частности, отметим [6], где для системы уравнений вязкоупругости с граничным условием Неймана специального вида решается обратная задача определения четырех неизвестных: плотности ρ(x 3 ), коэффициентов Ламэ λ(x 3 ), µ(x 3 ), ядра K(t) при x 3 > 0, t ≥ 0.…”
Section: Introductionunclassified
“…In many cases, the equations describing the propagation of electrodynamic and elastic waves with integral convolution terms are reduced to one second‐order hyperbolic integro‐differential equations. One‐dimensional and multidimensional problems of recovering the kernel of convolution integral in these equations were investigated in previous studies 1-15 . Besides, the works 16-19 that studied the 3D rotating flow of a nanoliquid were examined in the presence of Darcy–Forchheimer porous space and homogeneous–heterogeneous reactions.…”
Section: Introduction and Setting Up The Problemmentioning
confidence: 99%
“…The main feature, appropriate to other works 3-14 and to the present work, is the use of a source localized on the boundary of the considered space domain; this source initiates the physical process of wave transmission. This feature essentially increases the meaning of the investigation for applications.…”
Section: Introduction and Setting Up The Problemmentioning
confidence: 99%