The driving force of high-quality development of regional economy is inseparable from the support of technology. With the support of big data, we need to solve this problem in order to solve the difficulty of large-scale experimental testing and accurately reflect the feasibility growth of data sample changes. This paper proposes a discrete dynamic modeling technology based on big data background to analyze the development and change of regional economy. The reliability AMSAA model is usually used for dynamic discrete modeling. It can be combined with the change data provided by big data to form a dynamic modeling method for reliability growth evaluation. Then, the Bayesian regression method is used to predict the change parameters of the model, and the spatial econometric method is used to analyze the regional economic change. The results show that compared with the traditional methods, the discrete dynamic modeling method is more accurate and can effectively solve the problem of reliable growth under the condition of big data. After introducing the spatial effect measurement model, it can also reflect the main factors of the growth and change of regional economic real output value. In addition to the development of high and new technology, terrain factors, investment, and government support have also had different effects. Therefore, according to the above results, it is proved that the discrete dynamic modeling technology can accurately obtain the experimental data and provide reliable technical support for dynamic data processing.