Purpose
Pancreatic ductal adenocarcinoma (PDAC) is associated with an immunosuppressive milieu that supports immune system evasion and disease progression. Here, we interrogated genetic, stromal, and immunological features of PDAC to delineate impact on prognosis and means to more effectively employ immunotherapy.
Experimental design
A cohort of 109 PDAC cases annotated for overall survival was utilized as a primary discovery cohort. Gene expression analysis defined immunological subtypes of PDAC that were confirmed in the Cancer Genome Atlas data set. Stromal and metabolic characteristics of PDAC cases were evaluated by histological analysis and immunostaining. Enumeration of lymphocytes, as well as staining for CD8, FOXP3, CD68, CD163, PDL1, and CTLA4 characterized immune infiltrate. Neo-antigens were determined by analysis of whole exome sequencing data. Random-forest clustering was employed to define multi-marker subtypes, with univariate and multivariate analyses interrogating prognostic significance.
Results
PDAC cases exhibited distinct stromal phenotypes that were associated with prognosis, glycolytic and hypoxic biomarkers and immune infiltrate composition. Immune infiltrate was diverse among PDAC cases and enrichment for M2 macrophages and select immune checkpoints regulators were specifically associated with survival. Composite analysis with neo-antigen burden, immunological, and stromal features defined novel subtypes of PDAC that could have bearing on sensitivity to immunological therapy approaches. Additionally, a subtype with low levels of neo-antigens and minimal lymphocyte infiltrate was associated with improved overall survival.
Conclusions
The mutational burden of PDAC is associated with distinct immunosuppressive mechanisms that are conditioned by the tumor stromal environment. The defined subtypes have significance for utilizing immunotherapy in the treatment of PDAC.