The emerging field of quantum sensors and electronics for fundamental physics is introduced, emphasising the role of thin-film superconducting devices. Although the next generation of ground-based and space-based experiments requires the development of advanced technology across the whole of the electromagnetic spectrum, this article focuses on ultra-low-noise techniques for radio to far-infrared wavelengths, where existing devices fall short of theoretical limits. Passive circuits, detectors and amplifiers are described from classical and quantum perspectives, and the sensitivities of detector-based and amplifier-based instruments discussed. Advances will be achieved through refinements in existing technology, but innovation is essential. The needed developments go beyond engineering and relate to theoretical studies that bring together concepts from quantum information theory, quantum field theory, classical circuit theory, and device physics. This article has been written to introduce graduate-level scientists to quantum sensor physics, rather than as a formal review.In memory of my sister Diana Syder, clinical speech and language specialist, artist and poet, who dedicated her life to helping others communicate.