Considerable research has been devoted to understanding the popularity effect on the art market dynamics, meaning that artworks by popular artists tend to have high prices. The hedonic pricing model has employed artists’ reputation attributes, such as survey results, to understand the popularity effect, but the reputation attributes are constant and not properly defined at the point of artwork sales. Moreover, the artist’s ability has been measured via random effect in the hedonic model, which fails to reflect ability changes. To remedy these problems, we present a method to define the popularity measure using the artwork sales dataset without relying on the artist’s reputation attributes. Also, we propose a novel pricing model to appropriately infer the time-dependent artist’s abilities using the presented popularity measure. An inference algorithm is presented using the EM algorithm and Gibbs sampling to estimate model parameters and artist abilities. We use the Artnet dataset to investigate the size of the rich-get-richer effect and the variables affecting artwork prices in real-world art market dynamics. We further conduct inferences about artists’ abilities under the popularity effect and examine how ability changes over time for various artists with remarkable interpretations.