Uncertainty in operating parameters during laser thermal pain treatment can yield unreliable results. To ensure reliability and effectiveness, we performed uncertainty analysis and optimization on these parameters. Firstly, we conducted univariate analysis to identify significant operational parameters. Next, an agent model using RBNN regression determined the relationship between these parameters, the constraint function, and the target function. Using interval uncertainty analysis, we obtained confidence distributions and established a nonlinear interval optimization model. Introducing RPDI transformed the model into a deterministic optimization approach. Solving this with a genetic algorithm yielded an optimal solution. The results demonstrate that this solution significantly enhances treatment efficacy while ensuring temperature control stability and reliability. Accounting for parameter uncertainties is crucial for achieving dependable and effective laser thermal pain treatment. These findings have important implications for advancing the clinical application of this treatment and enhancing patient outcomes.