Fully coupled lithosphere, atmosphere, and ionosphere theory has demonstrated that extremely low-frequency electromagnetic (ELF-EM) fields present a broad application prospect in deep resource exploration, but previous studies have ignored the contribution of the Earth’s curvature. This study extends the theory of ELF-EM over a stratified Earth to the case where the Earth’s curvature must be taken into account, and presents an analytical solution of the ELF-EM field excited by a grounded horizontal antenna in a spherical Earth–ionosphere model, whose theoretical approach and solution method are notably different from the flat Earth–ionosphere model. Additionally, the Earth is treated as a concentric-layered sphere rather than an ideal homogeneous sphere. We aim to investigate the effects of the Earth’s curvature on the surface field, so as to broaden the coverage of the ELF wave in resource exploration. The solution is mathematically accurate and physically reasonable, since it reflects the sphericity and radially stratified structure of the Earth. We first verify the correctness and reliability of the proposed method by comparing the results with FDTD in a full-space spherical model. Additionally, we then compared the spherical results with the conventional controlled-source electromagnetic method and flat Earth–ionosphere results. The results show that when the distance between the transmitter and the receiver is comparable to the Earth radius, the spherical model better reflects the resonance of the wave in the cavity, suggesting that the effect of the Earth’s curvature is not negligible. Then, the numerical simulations conducted to investigate the properties of the EM fields and their sensitivities to the conductivity at depth in the Earth are discussed. Finally, the EM responses of some simple electrical conductivity structures models are modeled to illustrate their prospects in future resource exploration.