Buruli ulcer (BU) is a devastating, necrotizing, tropical skin disease caused by infections with Mycobacterium ulcerans. In contrast to other mycobacterioses, BU has been associated with minimal or absent inflammation. However, here we show that in the mouse M. ulcerans induces persistent inflammatory responses with virulence-dependent patterns. Mycolactone-positive, cytotoxic strains are virulent for mice and multiply progressively, inducing both early and persistent acute inflammatory responses. The cytotoxicity of these strains leads to progressive destruction of the inflammatory infiltrates by postapoptotic secondary necrosis, generating necrotic acellular areas with extracellular bacilli released by the lysis of infected phagocytes. The necrotic areas, always surrounded by acute inflammatory infiltrates, expand through the progressive invasion of healthy tissues around the initial necrotic lesions by bacteria and by newly recruited acute inflammatory cells. Our observations show that the lack of inflammatory infiltrates in the extensive areas of necrosis seen in advanced infections results from the destruction of continuously produced inflammatory infiltrates and not from M. ulcerans-induced local or systemic immunosuppression. Whether this is the mechanism behind the predominance of minimal or absent inflammatory responses in BU biopsies remains to be elucidated.Pathogenic mycobacteria are intracellular parasites that are responsible for several clinically important infections in humans and animals. The most frequent mycobacterial infections in humans are caused by Mycobacterium tuberculosis and M. leprae. However, a unique group of mycobacterioses has been emerging and comprises infections caused by M. marinum, M. hemophilum, and M. ulcerans (12). These are slow-growing mycobacteria with some genetic relatedness (71) and common peculiar characteristics. These mycobacteria have optimal growth temperatures of 28 to 33°C and infect primarily the cooler parts of the body, mainly the skin. They have cytotoxic activity (17,56,57) and, as a consequence, produce necrotizing lesions (3,7,12,72).Buruli ulcer (BU), caused by M. ulcerans, has become the third most prevalent mycobacteriosis throughout the world, after tuberculosis and leprosy, with higher incidence in the tropical regions of western and central Africa (11,74). BU is a devastating skin disease characterized by different clinical forms, including nonulcerative subcutaneous nodules, papules, edema, and plaques, that can eventually progress to ulcerative forms and often to extensive necrotic lesions (11, 74). Osteomyelitis has been described as a complication of M. ulcerans infection, particularly in some African regions (11,39).Genetic analyses showed that M. marinum and M. ulcerans are very closely related to M. tuberculosis (71), a mycobacterium that also exhibits some cytotoxicity (14,19,37,43), which contributes to the necrotic lesions seen in tuberculosis (43). Recently, genes in the extRD1 region have been implicated in the cytotoxic activity of M...