Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case, $$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + /$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case, $$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - /$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from $$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + to $$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From $$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - to $$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct $$\pi $$ π back-donation disparity could be confirmed by comparison with the isolated CN$$^-$$ - system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications. Graphical abstract The adiabatic connection scheme relates local to normal modes, with symmetry breaking giving rise to axial and equatorial group local frequencies
The characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case, $$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + /$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case, $$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - /$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from $$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + to $$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From $$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - to $$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct $$\pi $$ π back-donation disparity could be confirmed by comparison with the isolated CN$$^-$$ - system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications. Graphical abstract The adiabatic connection scheme relates local to normal modes, with symmetry breaking giving rise to axial and equatorial group local frequencies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.