Bacteria can use branched-chain amino acids (ILV, i.e., isoleucine, leucine, valine) and fatty acids (FAs) as sole carbon and energy sources converting ILV into acetyl-coenzyme A (CoA), propanoyl-CoA, and propionylCoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR, and GntR families binding to 11 distinct DNA motifs. The ILV degradation genes in gamma-and betaproteobacteria are regulated mainly by a novel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species); in addition, the TetR-type regulator LiuQ was identified in some betaproteobacteria (eight species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gammaproteobacteria (34 species), PsrA in gamma-and betaproteobacteria (45 species), FadP in betaproteobacteria (14 species), and LiuR orthologs in alphaproteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from functional and evolutionary points of view.Proteobacteria comprise one of the largest divisions within prokaryotes and incorporate species possessing a very complex collection of phenotypic and physiological attributes including many phototrophs, heterotrophs, and chemolithotrophs. The proteobacterial group is of great biological significance, as it includes a large number of pathogens and symbionts of animals and plants. Thus, proteobacteria display an amazing versatility in their abilities to use various carbon sources such as carbohydrates, nucleotides, amino acids, and lipids. The degradation of branched-chain amino acids valine, leucine, and isoleucine (ILV) and fatty acids (FAs) is used for ATP and energy production by many proteobacteria.The ILV degradation pathways are outlined in Fig. 1A. The first reaction is transamination to the corresponding ␣-keto acids using either branched-chain amino acid aminotransferase or leucine dehydrogenase. The second step is oxidative decarboxylation to the corresponding acyl-coenzyme A (CoA) derivative coupled to dehydrogenation, which is carried out by a common branched-chain ␣-keto acid dehydrogenase (BCDH) (EC 1.2.4.4) complex. The further conversion of branchedchain acyl-CoA derivatives of ILV amino acids, namely, isovaleryl-CoA for leucine, 2-methylbutanoyl-CoA for isoleucine, and isobutyryl-CoA for valine, into acetyl-CoA and propionyl-CoA is...