Thiamine pyrophosphate (TPP) is an essential cofactor for various pivotal cellular processes in all living organisms, including bacteria. As thiamine biosynthesis occurs in bacteria but not humans, bacterial thiamine biosynthesis is an attractive target for antibiotic development. Among enzymes in the thiamine biosynthetic pathway, thiamine monophosphate kinase (ThiL) catalyzes the final step of the pathway, phosphorylating thiamine monophosphate (TMP) to produce TPP. In this work, we extensively investigated ThiL in Pseudomonas aeruginosa, a major pathogen of hospital-acquired infections. We demonstrated that thiL deletion abolishes not only thiamine biosynthesis but also thiamine salvage capability, showing growth defects of the ΔthiL mutant even in the presence of thiamine derivatives except TPP. Most importantly, the pathogenesis of the ΔthiL mutant was markedly attenuated compared to wild-type bacteria, with lower inflammatory cytokine induction and 10 3~1 0 4 times decreased bacterial load in an in vivo infection model where the intracellular TPP level is in the submicromolar range. In order to validate P. aeruginosa ThiL (PaThiL) as a new drug target, we further characterized its biochemical properties determining a Vmax of 4.0±0.2 nomol·min -1 and KM values of 111±8 and 8.0±3.5μM for ATP and TMP, respectively. A subsequent in vitro small molecule screening identified PaThiL inhibitors including 2