How different is the universal cover of a given finite 2-complex from a 3-manifold (from the proper homotopy viewpoint)? Regarding this question, we recall that a finitely presented group G is said to be properly 3-realizable if there exists a compact 2-polyhedron K with π 1 (K) ∼ = G whose universal coverK has the proper homotopy type of a PL 3-manifold (with boundary). In this paper, we study the asymptotic behavior of finitely generated one-relator groups and show that those having finitely many ends are properly 3-realizable, by describing what the fundamental pro-group looks like, showing a property of one-relator groups which is stronger than the QSF property of Brick (from the proper homotopy viewpoint) and giving an alternative proof of the fact that one-relator groups are semistable at infinity.