Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Submerged jets have a variety of practical applications due to their versatility in providing efficient and environmentally friendly options for treatment in various industries. The physical background is based on the continuous water jet (CWJ) application powered via stagnation pressure. However, it is known that impact pressure is much more effective than static pressure. When the impact pressure is repeated with a high frequency per time unit, the erosive effects of water can be used even at pressures below 100 MPa, which is attractive from the point of view of the low demands of the hydraulic system. Surface modification utilising impact pressure can be achieved by employing the pulsed water jet (PWJ) method. The combination of parameters such as the traverse speed and trajectory pattern can control the number of water clusters impacting the material surface. So far, the field of application of PWJ for surface treatment has mostly been investigated water atmospheric conditions. This article focuses on the possibility of the surface modification of AISI 304L stainless steel using the PWJ method under submerged conditions. The results are compared to those obtained under atmospheric conditions. The reference samples were treated by the same technological conditions using a continuous water jet (CWJ). The affected surfaces were characterised using areal surface roughness parameters Sa, Sz, Sp, and Sv, and the surface topography and mechanism of erosion wear were evaluated by scanning electron microscopy. A significant increase in all roughness parameters was confirmed using the PWJ compared to the CWJ method (both in atmospheric and submerged conditions), which confirms the importance of using impact pressure. The surface treatment by PWJ under submerged conditions resulted in a decrease of the surface roughness parameter Sa by approximately 97% compared to atmospheric conditions at a traverse speed of 2 mm/s for perpendicular interleaved trajectory, nevertheless, the homogeneity of treatment over a larger area was improved.
Submerged jets have a variety of practical applications due to their versatility in providing efficient and environmentally friendly options for treatment in various industries. The physical background is based on the continuous water jet (CWJ) application powered via stagnation pressure. However, it is known that impact pressure is much more effective than static pressure. When the impact pressure is repeated with a high frequency per time unit, the erosive effects of water can be used even at pressures below 100 MPa, which is attractive from the point of view of the low demands of the hydraulic system. Surface modification utilising impact pressure can be achieved by employing the pulsed water jet (PWJ) method. The combination of parameters such as the traverse speed and trajectory pattern can control the number of water clusters impacting the material surface. So far, the field of application of PWJ for surface treatment has mostly been investigated water atmospheric conditions. This article focuses on the possibility of the surface modification of AISI 304L stainless steel using the PWJ method under submerged conditions. The results are compared to those obtained under atmospheric conditions. The reference samples were treated by the same technological conditions using a continuous water jet (CWJ). The affected surfaces were characterised using areal surface roughness parameters Sa, Sz, Sp, and Sv, and the surface topography and mechanism of erosion wear were evaluated by scanning electron microscopy. A significant increase in all roughness parameters was confirmed using the PWJ compared to the CWJ method (both in atmospheric and submerged conditions), which confirms the importance of using impact pressure. The surface treatment by PWJ under submerged conditions resulted in a decrease of the surface roughness parameter Sa by approximately 97% compared to atmospheric conditions at a traverse speed of 2 mm/s for perpendicular interleaved trajectory, nevertheless, the homogeneity of treatment over a larger area was improved.
This work discusses the effect of abrasive jet path strategies and analyzes the method of machining, surface characterization of pocket milling on Stainless steel 316(ss316) by using abrasive water jet machining. As abrasive water jet machining is a prominent well proven technology among various nontraditional methods for machining of complex and intricate features. Abrasive water jet pocket milling is one such application which requires the optimization of process parameters such as pressure, standoff distance (SOD), abrasive flow rate (AFR) which influences the depth of pocket, material removal rate, surface roughness of the pocket. By considering the limitations, depth of pockets is machined by varying optimum process parameters and different pocket milling tool path strategies such as contour and raster jet path are used while machining. Optimized Surface generated by these jet path strategies were evaluated for their surface morphological studies at the start, middle and end of the pockets. Scanning electron microscope is used to observe the microstructure of the pockets. The results from the SEM images show that at the center of the pocket has no abrasive particle embedment and start& end of the pocket has more abrasive particle embedment in the raster path because of the jet lag for few seconds whereas in contour path the both ends of the pocket are with less particle embedment and start of the pocket in the contour path is middle, so there it has more particle embedment. Comparison between the both jet paths strategies are discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.