For over twenty years the possibility that the electromagnetic zero point field (ZPF) may actively accelerate electromagnetically interacting particles in regions of extremely low particle density (as those extant in intergalactic space (IGS) with n ≤ 1 particle m −3 ) has been studied and analyzed. This energizing phenomenon has been one of the few contenders for acceleration of cosmic rays (CR), particularly at ultrahigh energies. The recent finding by the AGASA collaboration (Phys. Rev. Lett., 81, 1163Lett., 81, , 1998) that the CR energy spectrum does not display any signs of the Greisen-Zatsepin-Kuzmin cut-off (that should be present if these CR particles were indeed generated in localized ultrahigh energies CR sources, as e.g., quasars and other highly active galactic nuclei), may indicate the need for an acceleration mechanism that is distributed throughout IGS as is the case with the ZPF. Other unexplained phenomena that receive an explanation from this mechanism are the generation of X-ray and gamma-ray backgrounds and the existence of Cosmic Voids. However recently, a statistical mechanics kind of challenge to the classical (not the quantum) version of the zero-point acceleration mechanism has been posed (de la Peña and Cetto, The Quantum Dice, 1996). Here we briefly examine the consequences of this challenge and a prospective resolution.