Using mainly two techniques, a point transformation and a time dependent supersymmetry, we construct in sequence several quantum infinite potential wells with a moving barrier. We depart from the well known system of a one-dimensional particle in a box. With a point transformation, an infinite square-well potential with a moving barrier is generated. Using time dependent supersymmetry, the latter leads to a trigonometric Pöschl-Teller potential with a moving barrier. Finally, a confluent time dependent supersymmetry transformation is implemented to generate new infinite potential wells, all of them with a moving barrier. For all systems, solutions of the corresponding time dependent Schrödinger equation fulfilling boundary conditions are presented in a closed form.