We discuss the "sheet structure" of compressed baryonic matter possibly present in massive compact stars in terms of quantum Hall droplets and skyrmions for baryons in medium. The theoretical framework is anchored on a generalized scale symmetric hidden local symmetry that encompasses standard nuclear effective field theory (sEFT) and can access the density regimes relevant to massive compact stars. It hints at a basically different, hitherto unexplored structure of the densest baryonic matter stable against collapse to black hole. Hidden scale symmetry and hidden local symmetry together in nuclear effective field theory are seen to play a potentially crucial role in providing the hadron-quark duality in compressed baryonic matter.