An Exploratory Data Analysis (EDA) aims to use Synthetic Aperture Radar (SAR) measurements for discriminating between two oil slick types observed on the sea surface: naturally-occurring oil seeps versus human-related oil spills-the use of satellite sensors for this task is poorly documented in scientific literature. A long-term RADARSAT dataset (2008)(2009)(2010)(2011)(2012)) is exploited to investigate oil slicks in Campeche Bay (Gulf of Mexico). Simple Classification Algorithms to distinguish the oil slick type are designed based on standard multivariate data analysis techniques. Various attributes of geometry, shape, and dimension that describe the oil slick Size Information are combined with SAR-derived backscatter coefficients-sigma-(σ o ), beta-(β o ), and gamma-(γ o ) naught. The combination of several of these characteristics is capable of distinguishing the oil slick type with~70% of overall accuracy, however, the sole and simple use of two specific oil slick's Size Information (i.e., area and perimeter) is equally capable of distinguishing seeps from spills. The data mining exercise of our EDA promotes a novel idea bridging petroleum pollution and remote sensing research, thus paving the way to further investigate the satellite synoptic view to express geophysical differences between seeped and spilled oil observed on the sea surface for systematic use.