We present a novel formulation for startup cost computation in the unit commitment problem (UC). Both our proposed formulation and existing formulations in the literature are placed in a formal, theoretical dominance hierarchy based on their respective linear programming relaxations. Our proposed formulation is tested empirically against existing formulations on large-scale UC instances drawn from real-world data. While requiring more variables than the current state-of-the-art formulation, our proposed formulation requires fewer constraints, and is empirically demonstrated to be as tight as a perfect formulation for startup costs. This tightening can reduce the computational burden in comparison to existing formulations, especially for UC instances with large reserve margins and high penetration levels of renewables.