Let F 1 , . . . , F r ⊂ [n] k be r-cross t-intersecting, that is, |F 1 ∩ · · · ∩ F r | t holds for all F 1 ∈ F 1 , . . . , F r ∈ F r . We prove that for every p, μ ∈ (0, 1) there exists r 0 such that for all r > r 0 , all t with 1 t < (1/p − μ) r−1 /(1 − p) − 1, there exist n 0 and so that if n > n 0 and |k/n − p| < , then |F 1 | · · · |F r | n−t k−t r .