Abstract. We give new lower bounds for the (higher) topological complexity of a space, in terms of the Lusternik-Schnirelmann category of a certain auxiliary space. We also give new lower bounds for the rational topological complexity of a space, and more generally for the rational sectional category of a map, in terms of the rational category of a certain auxiliary space. We use our results to deduce consequences for the global (rational) homotopy structure of simply connected, hyperbolic finite complexes.