This review will focus on recent progress regarding the mechanisms of light-induced discoloration of mechanical and chemimechanical pulps and on the proposed preventive treatments. It is evident that the mechanisms behind photoyellowing of lignin-rich pulps are complex and that several types of reaction pathways may coexist. Photoyellowing proceeds via one initial fast phase and a slower following phase. The fast phase has been ascribed to oxidation of free phenolic groups and/or hydroquinones and catechols to photoproducts of mainly quinonoid character. A multitude of reactions involving several lignin subunits are possible. Important intermediates are phenoxyl radicals, and to some extent ketyl radicals. The importance of the phenacyl aryl ether pathway might be more important than previously thought, even though the original content of such groups is low in lignin. Even though many preventive methods against photoyellowing have been suggested, no cost-efficient treatment is available to hinder photoreversion of lignincontaining paper permanently. Suggested methods for stabilization include chemical modification (etherification and esterification), coating the paper product, addition of radical scavengers, excited state quenchers, or ultraviolet absorbing compounds.