Na[cyclo-(P(5)tBu(4))] (1) reacts with [NiCl(2)(PEt(3))(2)] and [PdCl(2)(PMe(2)Ph)(2)] with elimination of tBuCl and formation of the corresponding metal(0) cyclopentaphosphene complexes [Ni{cyclo-(P(5)tBu(3))}(PEt(3))(2)] (2) and [Pd{cyclo-(P(5)tBu(3))}(PMe(2)Ph)(2)] (3). In contrast, complexes with the more labile triphenylphosphane ligand, such as [MCl(2)(PPh(3))(2)] (M=Ni, Pd), react with 1 with formation of [NiCl{cyclo-(P(5)tBu(4))}(PPh(3))] (4) and [Pd{cyclo-(P(5)tBu(4))}(2)] (5), respectively, in which the cyclo-(P(5)tBu(4)) ligand is intact. In the case of palladium, the cyclopentaphosphene complex [Pd{cyclo-(P(5)tBu(3))}(PPh(3))(2)] (6) in trace amounts is also formed. However, [Ni{cyclo-(P(5)tBu(4))}(2)] (7) is easily obtained by reaction of two equivalents of 1 and one equivalent of [NiCl(2)(bipy)] at room temperature. Complex 7 rearranges on heating in n-hexane or toluene to the previously unknown [Ni{cyclo-(P(5)tBu(4))PtBu}{cyclo-(P(4)tBu(3))}] (8), which presumably is formed via the intermediate [Ni{cyclo-(P(5)tBu(4))}{cyclo-(P(4)tBu(3))PtBu}], which, after an unexpected and unprecedented phosphanediide migration, gives 8, but always as an inseparable mixture with 7. In the reaction of 1 with [PtCl(2)(PPh(3))(2)], ring contraction and formation of [PtCl{cyclo-(P(4)tBu(3))PtBu}(PMe(2)Ph)] (9) is observed. Complexes 3-5 and 7-9 were characterised by (31)P NMR spectroscopy, and X-ray structures were obtained for 5-9.