A green and efficient sample preparation method using a deep eutectic solvent-based ultrasounds-assisted dispersive liquid-liquid microextraction with solidification of the aqueous phase followed by high performance liquid chromatography analysis was developed for preconcentration and determination of heavy metals in environmental samples. In the proposed method, a novel, low density deep eutectic solvent was prepared by mixing trihexyl(tetradecyl)phosphonium chloride and thiosalicylic acid at a molar ratio of 1:2 and used both as an extractant and complexing agent. Ultrasound was used to disperse the extractant in the aqueous phase of the sample. Then, the phases were separated by centrifugation, after which the aqueous phase was frozen and the surface extractant phase was dissolved in a small volume of acetonitrile and subjected to liquid chromatographic analysis. The proposed method provided precisions (relative standard deviation, n = 5) in the range of 2.6-4.7%. The limit of detection were 0.05, 0.13, 0.06, and 0.11 μg/L for Pb(II), Cd(II), Co(II), Ni(II), respectively. The enhancement factors were equal to 154, 159, 162, and 158 for lead(II), cadmium(II), cobalt(II), and nickel(II), respectively. The accuracy of the proposed method was evaluated using certified reference materials (CA011b -hard drinking water, NIST 1643e -trace elements in water, TMRAIN-04 -simulated rain sample).
K E Y W O R D Sdeep eutectic solvents, dispersive liquid-liquid microextraction, heavy metals, solidification of aqueous phase, ultrasound