The dark matter halo of the Milky Way is predicted to contain a very large number of smaller subhalos. As a result of the dark matter annihilations taking place within such objects, the most nearby and massive subhalos could appear as point-like or spatially extended gamma-ray sources, without observable counterparts at other wavelengths. In this paper, we use the results of the Aquarius simulation to predict the distribution of nearby subhalos, and compare this to the characteristics of the unidentified gamma-ray sources observed by the Fermi Gamma-Ray Space Telescope. Focusing on the brightest high latitude sources, we use this comparison to derive limits on the dark matter annihilation cross section. For dark matter particles lighter than ∼200 GeV, the resulting limits are the strongest obtained to date, being modestly more stringent than those derived from observations of dwarf galaxies or the Galactic Center. We also derive independent limits based on the lack of unidentified gamma-ray sources with discernible spatial extension, but these limits are a factor of ∼2-10 weaker than those based on point-like subhalos. Lastly, we note that four of the ten brightest high-latitude sources exhibit a similar spectral shape, consistent with 30-60 GeV dark matter particles annihilating to bb with an annihilation cross section on the order of σv ∼ (5 − 10) × 10 −27 cm 3 /s, or 8-10 GeV dark matter particles annihilating to τ + τ − with σv ∼ (2.0 − 2.5) × 10 −27 cm 3 /s.