“…If rank(α) = 1 we have that j 2 f (0) ∼ (x, y, a 1 z 2 + a 2 xz + a 3 yz, 0), obtaining, following an analogous procedure to the previous case the A 2 -orbits (x, y, z 2 , 0) and (x, y, xz, 0). Finally, if rank(α) = 0 we get that j 2 f (0) ∼ (x, y, 0, 0).…”