Background
Persons with HIV (PWH) are characterized by altered brain structure and function. As they attain normal lifespans, it has become crucial to understand potential interactions between HIV and aging. However, it remains unclear how brain aging varies with viral load (VL).
Methods
In this study, we compare MRI biomarkers amongst PWH with undetectable VL (UVL; ≤50 genomic copies/ml; n=230), PWH with detectable VL (DVL; >50 copies/ml; n=93), and HIV uninfected (HIV-) controls (n=206). To quantify gray matter cerebral blood flow (CBF), we utilized arterial spin labeling. To measure structural aging, we used a publicly available deep learning algorithm to estimate brain age from T1-weighted MRI. Cognitive performance was measured using a neuropsychological battery covering five domains.
Results
Associations between age and CBF varied with VL. Older PWH with DVL had reduced CBF vs. PWH with UVL (p=0.02). Structurally predicted brain aging was accelerated in PWH vs. HIV- controls regardless of VL (p<0.001). Overall, PWH had impaired learning, executive function, psychomotor speed, and language compared to HIV- controls. Structural brain aging was associated with reduced psychomotor speed (p<0.001).
Conclusions
Brain aging in HIV is multifaceted. CBF depends on age and current VL, and is improved by medication adherence. By contrast, structural aging is an indicator of cognitive function and reflects serostatus rather than current VL.