-The effects of cyanobacterial toxins on herbivorous zooplankton depend on cyanobacterial strains, zooplankton species and environmental conditions. To explore the relationship between zooplankton and cyanobacteria, we investigated the effects of Planktothrix agardhii extracts on Daphnia magna population dynamics. We designed an experiment where individuals were grown in the presence of extracts of two P. agardhii strains. We monitored daily life-history parameters of D. magna individuals subjected to microcystin-RR (MC-RR), intracellular and extracellular extracts of a microcystin-producing strain (MC-strain, PMC 75.02) and a microcystin-free strain (MC-free strain, PMC 87.02) of P. agardhii. Measured life-history parameters of D. magna were used to build population dynamics models and compute expected population growth rate, replacement rate, generation time and proportion of adult and juveniles at demographic equilibrium. Results show that MC-RR tends to slow the life history (reduced growth rate and larger proportion of adults). In contrast, intracellular extracts of the two strains tend to accelerate the life history (increased growth rate, decreased generation time and lower proportion of adults). Extracellular extracts produce the same trends as the intracellular extracts but to a lesser extent. However, the MC-strain has stronger effects than the MC-free strain. Interestingly, extracellular extracts of the MC-free strain may have effects comparable to pure MC-RR. Moreover, in the presence of MC-RR and both cyanobacterial extracts, the daily fecundities present a cyclic pattern. These results suggest that MC-RR and unknown metabolites of cyanobacterial extracts have negative effects on D. magna reproduction processes such as those observed with endocrine-disruptive molecules.