BackgroundDepression is a common mental disorder that impacts millions of people across the world. However, its diagnosis is difficult due to the dependence on subjective testing. Although quantitative electroencephalography (EEG) has been investigated as a promising diagnostic tool for depression, the associated results have proven contradictory. The current study determines whether the alpha/beta (ABR), alpha/theta (ATR), and theta/beta (TBR) ratios can serve as biological markers of depression.MethodsWe used open‐access EEG data from OpenNeuro to investigate power ratios in the resting state of 46 patients with depression and 75 healthy controls. Spectral data were extracted by fast Fourier transform at the theta band (4–8 Hz), alpha band (8–13 Hz), and beta band (13–32 Hz). Neural network, logistic regression, and receiver operating characteristic (ROC) curves were used to assess the diagnostic accuracies of each suggested index. Additionally, the cutoff point, sensitivity, specificity, positive predictive value, and negative predictive value at the maximized Youden index were compared for each variable.ResultsDecreased anterior frontal, frontal, central, parietal, occipital, and temporal ABR and decreased central and parietal TBR were observed in the depression group. The area under the curve of the ROC curves further revealed that these ratios could all effectively differentiate depression. In particular, the central, frontal, and parietal ABR exhibited high discrimination scores. Multiple logistic regression analysis demonstrated that the Beck Depression Inventory and Spielberger Trait Anxiety Inventory scores, as well as the probability of depression, increased with a decrease in the central ABR. Moreover, neural network analysis revealed that the global ABR was the most effective index for diagnosing depression among the three global EEG power ratios.ConclusionsThe central, frontal, and parietal ABR represent potential biomarkers to differentiate patients with depression from healthy controls.