A special screening procedure for the detection of induced Y-autosome translocations with centric breakpoints was applied. A series of Experimental stocks was constructed, each containing a different half of one of the induced T(Y; 2)'s (T element). The three other elements that were involved in the segregation experiments in each stock were a sex chromosome (X element), an inverted chromosome 2 (A element), and a free arm of chromosome 2 (F element). It is not feasible to determine the relative frequencies of all the 16 possible gamete types by mating an Experimental stock to one tester, nor to different testers that have each at least one class of progeny of the same genotype. Each Experimental stock was mated to four different Tester stocks and the data were calibrated so that a coherent segregation pattern could be obtained.Segregation patterns in meiosis of males from 15 Experimental stocks, each with a different T element were studied. In most Experimental stocks the T element was of the left autosomal arm, while the F element was of the right autosomal arm. In four Experimental stocks the X element segregated independently of the A, F and T elements. In these Group 1 stocks, both the F and the T elements disjoined regularly from the A element. It was concluded that the T element of these stocks had no sex-chromosome disjunction determinants ('S-determinants') to interact with the determinants on the X element. Both the T elements and the F elements carried autosomal disjunction determinants ('Hdeterminants') that secured the segregation of the autosomal elements. The H-determinants of the left autosomal arm were qualitatively different from those of the right arm.In the remaining 11 Group-2 Experimental stocks the X and T elements disjoined regularly, indicating the presence of S-determinants on the T elements of these stocks. The segregation of the T and the A elements in these stocks varied from nearly complete dependence to complete independence. It was concluded that this gradation reflected differences in the quantity of H-determinants present on the T elements of these Experimental stocks. It was impossible to discriminate between a model of continuous H determinants activity and one of a finite discrete number of determinants. The results do not agree with the claim that there are no autosomal disjunction determinants in the proximal heterochromatin of chromosome 2.
52R. FALK, SHULA BAKBB AND ANA RAHAT The S-determinants on the B s Yy + chromosome were located both adjacent to the centromere and distally on the long arm. The latter were probably translocated to the Y chromosome together with the B s marker.