The study was conducted to investigate the effects of dietary maternal selenomethionine or sodium selenite supplementation on performance and selenium status of broiler breeders and their next generation. Two hundred and forty 39-week-old Lingnan yellow broiler breeders were allocated randomly into two treatments, each of which included three replicates of 40 birds. Pretreatment period was 2 weeks, and the experiment lasted 8 weeks. The groups were fed the same basal diet supplemented with 0.30 mg selenium/kg of sodium selenite or selenomethionine. After incubation, 180 chicks from the same parental treatment group were randomly divided into three replicates, with 60 birds per replicate. All the offspring were fed the same diet containing 0.04 mg selenium/kg, and the experiment also lasted 8 weeks. Birth rate was greater (p < 0.05) in hens fed with selenomethionine than that in hens fed with sodium selenite. The selenium concentration in serum, liver, kidney, and breast muscle of broiler breeders, selenium deposition in the yolk, and albumen and tissues' (liver, kidney, breast muscle) selenium concentrations of 1-day-old chicks were significantly (p < 0.01) increased by maternal selenomethionine supplementation compared with maternal sodium selenite supplementation. The antioxidant status of 1-day-old chicks was greatly improved by maternal selenomethionine intake in comparison with maternal sodium selenite intake and was evidenced by the increased glutathione peroxidase activity in breast muscle (p < 0.05), superoxide dismutase activity in breast muscle and kidney (p < 0.05), glutathione concentration in kidney (p < 0.01), total antioxidant capability in breast muscle and liver (p < 0.05), and decreased malondialdehyde concentration in liver and pancreas (p < 0.05) of 1-day-old chicks. Feed utilization was better (p < 0.05), and mortality was lower (p < 0.05) in the progeny from hens fed with selenomethionine throughout the 8-week growing period compared with those from hens fed with sodium selenite. In summary, we concluded that maternal selenomethionine supplementation increased birth rate and Se deposition in serum and tissues of broiler breeders as well as in egg yolk and egg albumen more than maternal sodium selenite supplementation. Furthermore, maternal selenomethionine intake was also superior to maternal sodium selenite intake in improving the tissues Se deposition and antioxidant status of 1-day-old chicks and increasing the performance of the progeny during 8 weeks of post-hatch life.