Hydrate-based technologies have excellent application potential in gas separation, gas storage, transportation, and seawater desalination, etc. However, the long induction time and the slow formation rate are critical factors affecting the application of hydrate-based technologies. Micro-nano bubbles (MNBs) can dramatically increase the formation rate of hydrates owing to their advantages of providing more nucleation sites, enhancing mass transfer, and increasing the gas–liquid interface and gas solubility. Initially, the review examines key performance MNBs on hydrate formation and dissociation processes. Specifically, a qualitative and quantitative assembly of the formation and residence characteristics of MNBs during hydrate dissociation is conducted. A review of the MNB characterization techniques to identify bubble size, rising velocity, and bubble stability is also included. Moreover, the advantages of MNBs in reinforcing hydrate formation and their internal relationship with the memory effect are summarized. Finally, combining with the current MNBs to reinforce hydrate formation technology, a new technology of gas hydrate formation by MNBs combined with ultrasound is proposed. It is anticipated that the use of MNBs could be a promising sustainable and low-cost hydrate-based technology.