Exposure to veterinary antibiotics (VAs) and preferred as veterinary antibiotics (PVAs) via the food chain is unavoidable for their extensive use not only for treating bacterial infections, but also for use as growth promoters in livestock and aquaculture. One of the consequences is the disturbance of gut microbiota. However, its impact on the virulence and drug resistance of opportunistic pathogens is still unclear. In this study, a total of 26 antibiotics were detected in the urine of 300 young undergraduates in Anhui Province. We found that excessive intake of milk was positively correlated to high levels of VAs and PVAs. It led to the dysbiosis of gut microbiota characterized by high abundance of Bacteroidetes and Proteobacteria. The increase in Proteobacteria was mainly due to a single operational taxonomic unit (OTU) of Escherichia coli (E. coli). We isolated several E. coli strains from participants and compared their drug resistance and virulence using PCR assay and virulence-related assays. We observed that exposure to high levels of VAs and PVAs induced more resistant genes and drove E. coli strain to become more virulent. At last, we conducted transcriptome analysis to investigate the molecular mechanism of virulent and drug-resistant regulators in the highly virulent E. coli strain. We noted that there were multiple pathways involved in the drug resistance and virulence of the highly virulent strain. Our results demonstrated that participants with high-level VAs and PVAs exposure have a disrupted gut microbiota following the appearance of highly drug-resistant and virulent E. coli and, therefore may be at elevated risk for long-term health complications.