The gastrointestinal (GI) tract of vertebrates is inhabited by a vast array of organisms, that is, the microbiota and macrobiota. The former is composed largely of commensal microorganisms, which play vital roles in host nutrition and maintenance of energy balance, in addition to supporting the development and function of the vertebrate immune system. By contrast, the macrobiota includes parasitic helminths, which are mostly considered detrimental to host health via a range of pathogenic effects that depend on parasite size, location in the GI tract, burden of infection, metabolic activity, and interactions with the host immune system. Sharing the same environment within the vertebrate host, the GI microbiota and parasitic helminths interact with each other, and the results of such interactions may impact, directly or indirectly, on host health and homeostasis. The complex relationships occurring between parasitic helminths and microbiota have long been neglected; however, recent studies point towards a role for these interactions in the overall pathophysiology of helminth disease, as well as in parasite-mediated suppression of inflammation. Whilst several discrepancies in qualitative and quantitative modifications in gut microbiota composition have been described based on host and helminth species under investigation, we argue that attention should be paid to the systems biology of the gut compartment under consideration, as variations in the abundances of the same population of bacteria inhabiting different niches of the GI tract may result in varying functional consequences for host physiology.