Preferential flow is widely developed in varieties of voids (such as macropores and fissures) in loess areas, affecting slope hydrology and stability and even leading to geological disasters. However, the model of seepage evolution with dynamic preferential flow is not clear, which obstructs the disclosure of the mechanism of landslides induced by the preferential flow. This study aimed to capture the seepage and occurrence status of water in loess voids, explain the variability characteristics of the loess pore structure, and reveal the seepage evolution model of dynamic preferential flow. Preferential infiltration experiments were conducted by combining X-ray computed tomography (X-ray CT) nondestructive detection with contrast techniques under dynamic seepage conditions. Three-dimensional (3D) visualized reconstruction, digital image correlation (DIC), image processing, and quantitative analyses were performed in AVIZO 2019.1, including two-dimensional (2D) and 3D characteristics of preferential flow distribution and macropore changing, dynamic variation of the porosity, pore number, volume, dip angle, and connectivity. Results showed that (1) preferential flow exists under saturated and unsaturated conditions in loess with strong uniformity and anisotropy; (2) preferential flow not only migrates into existing connected macropores, but also connects the original isolated pores into channels and forms larger percolation groups of contrast medium under the gradually increased high pressure; (3) the seepage develops with the evolution model of ‘preferential flow–piston flow–preferential piston mixture flow–piston flow’ in the dynamic process. The new insights into the characteristics of the seepage evolution in undisturbed loess under dynamic preferential flow will enrich the understanding of loess seepage and provided an important reference for future research on the slope instability of the loess induced by preferential flow.