The relativistic effects of the dynamical properties of light at angular incidence were analyzed from the perspectives of Bohr indeterminacy and Heisenberg uncertainties and statistical dispersion. It was found that these effects report minimal uncertainties that agree with one or the other according to the angular range of incidence and that decrease with increasing refringence of the medium, constituting a specific relativistic uncertainty at angular incidence. An anomaly is indicated for the uncertainty principle in the Quantum Theory (QT) setting for small angles of incidence, where the accuracy of the angular position does not imply an increase in the uncertainty of the linear momentum. The anomalies arise because TQ does not predict the alternation between the classical and relativistic regimes of photon inertia at angular incidence. Specific relativistic uncertainty particularizes the uncertainty principle in the transmission of light between media pairs at angular incidence for the relativistic scenario, considering an observer that registers the relativistic effects of measurements that interfere with the observed system, in another inertial referential.