“…Main results. The diffusion process (X(t)) t≥0 is a Markov process on the real line with continuous paths and density p = p(x, t) = p(x, t; x 0 ; β, η) that satisfies the forward Kolmogorov equation p(x, 0) = δ(x − x 0 ), (4) p(0 + , t) = p(0 − , t), p x (0 + , t) = p x (0 − , t), (5) and p(x, t) must decay as x → ±∞. The limiting distribution of the diffusion process is (see [15]) (6) p(x, ∞; x 0 ; β, η) = C e − 1 2 ηx 2 e −βx , x > 0, e − 1 2 x 2 e −βx , x < 0, where C −1 = ∞ 0 e − 1 2 ηx 2 e −βx dx + 0 −∞ e − 1 2 x 2 e −βx dx.…”