In recent years, many innovative optimization algorithms have been developed. These algorithms have been employed to solve structural damage detection problems as an inverse solution. However, traditional optimization methods such as particle swarm optimization, simulated annealing (SA), and genetic algorithm are constantly employed to detect damages in the structures. This paper reviews the application of SA in different disciplines of structural health monitoring, such as damage detection, finite element model updating, optimal sensor placement, and system identification. The methodologies, objectives, and results of publications conducted between 1995 and 2021 are analyzed. This paper also provides an in-depth discussion of different open questions and research directions in this area.