This paper introduces novel modification for conventional air conditioning systems through utilizing a thermal ice storage system integrated with solar panels. Alexandria and Aswan, cities in Egypt, are chosen to represent two climates for hot-humid and hot-dry climates respectively. The governing equations for both heat and mass transfer are theoretically solved. Exergy analysis is performed for the proposed solar-ice thermal storage system via determining exergy destruction on ice and solar components as well as the total destruction based on transient analysis. This study was carried out on two common types of air conditioning systems, an air handling unit and fan coil unit. Results showed that, solar-ice storage system is more effective approach in hot-humid climate than hot-dry climate and more efficient with all-water air conditioning system than with all-air conditioning system. The maximum energy saving is 205.16 GJ having a percent of 27.5% in August for all water system in case of Alexandria city and 224.67 GJ with a percent of 25.38% in August for all-water system in case of Aswan city. All air system simulation showed maximum energy saving of 175.05 GJ with a percent of 18.13 % in case of August for Alexandria and 175.45 GJ having a percentage of 17.43% in case of Aswan in August. Moreover, the all-water system achieved a reduction in CO2 emissions by 467 tons/year in Aswan city and 390 tons/year in case of Alexandria city. While these reductions decrease to be 435 and 353 tons/year when the all-air system used for the same two cities.