Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The key point of 3D printing by selective laser sintering is the necessity of complete filling of the working chamber of the printer with a powder material. Since the powder is not completely consumed during the printing process, 25 – 30 wt.% of secondary (unused in the previous cycle) power is added to the primary material in each cycle. Repeated recirculation leads to degradation of the properties of the working powder mixture and increases the probability of rejects. We present the results of a colorimetric study of aging of polyamide-12 powder used in 3D printing by the method of selective laser sintering. Scanning and computer processing of digital images of primary and secondary polyamide powders obtained by colorimetry were performed using MathLab program package. Colorimetric analysis included the expression of the sample color using the parameters of color models applied in digital technologies for synthesizing colored images. The number of cycles before the onset of intensive destruction is no more than three, which is consistent with the practical experience in printing by selective laser sintering. The results characterizing change in the color of the secondary powder depending on the duration of thermal exposure and the gas medium are presented. It is shown that long-term storage of the powder for subsequent use is not advisable, since the initiators of destruction are already present in the material. Thermal oxidative destruction is shown to be a critical factor limiting the use of secondary powder along with changes in the crystallinity and fractional composition of particles. Computer processing of images of polymer powder obtained by the colorimetric method can be used to control the aging process of consumables and to predict the probability of rejections in 3D printing.
The key point of 3D printing by selective laser sintering is the necessity of complete filling of the working chamber of the printer with a powder material. Since the powder is not completely consumed during the printing process, 25 – 30 wt.% of secondary (unused in the previous cycle) power is added to the primary material in each cycle. Repeated recirculation leads to degradation of the properties of the working powder mixture and increases the probability of rejects. We present the results of a colorimetric study of aging of polyamide-12 powder used in 3D printing by the method of selective laser sintering. Scanning and computer processing of digital images of primary and secondary polyamide powders obtained by colorimetry were performed using MathLab program package. Colorimetric analysis included the expression of the sample color using the parameters of color models applied in digital technologies for synthesizing colored images. The number of cycles before the onset of intensive destruction is no more than three, which is consistent with the practical experience in printing by selective laser sintering. The results characterizing change in the color of the secondary powder depending on the duration of thermal exposure and the gas medium are presented. It is shown that long-term storage of the powder for subsequent use is not advisable, since the initiators of destruction are already present in the material. Thermal oxidative destruction is shown to be a critical factor limiting the use of secondary powder along with changes in the crystallinity and fractional composition of particles. Computer processing of images of polymer powder obtained by the colorimetric method can be used to control the aging process of consumables and to predict the probability of rejections in 3D printing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.