Periodic solutions for parametrically excited system under state feedback control with a time delay are investigated. Using the asymptotic perturbation method, two slow-flow equations for the amplitude and phase of the parametric resonance response are derived. Their fixed points correspond to limit cycles (phaselocked periodic solutions) for the starting system. In the system without control, periodic solutions (if any) exist only for fixed values of amplitude and phase and depend on the system parameters and excitation amplitude. In many cases, the amplitudes of periodic solutions do not correspond to the technical requirements. On the contrary, it is demonstrated that, if the vibration control terms are added, stable periodic solutions with arbitrarily chosen amplitude and phase can be accomplished. Therefore, an effective vibration control is possible if appropriate time delay and feedback gains are chosen.